
(12) United States Patent
Lavian et ai.

(54) METHOD AND SYSTEM FOR ACCESSING
LOW-LEVEL RESOURCES IN A NETWORK
DEVICE

(75) Inventors: Tal Isaac Lavian, Sunnyvale, CA (US);
Robert James Duncan, San Francisco,
CA (US); Robert F. Jaeger, Silver
Spring, MD (US)

(73) Assignee: Nortel Networks Limited, St. Laurent
(CA)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 812 days.

(21) Appl. No.: 09/753,359

(22) Filed: Dec. 29, 2000

(51) Int. CI? ... G06F 15/16
(52) U.S. CI. 709/203; 370/349; 370/401;

370/466
(58) Field of Search 709/203,224,

709/230; 370/473, 392, 349, 401, 466

(56) References Cited

U.S. PATENT DOCUMENTS

5,732,213 A * 3/1998 Gessel et al. 709/224
6,138,143 A * 10/2000 Gigliotti et al. 709/203

Start

502
\

~
Create Datagram For Transmission

Over Network

\
~

Select Network Layer To Establish
504

Communication

\
~

Open Socket At Selected Layer Of
506

Network Protocol Using IL API

\
~

Communicate At Selected Layer
508

Using IL API Socket

~
End

111111 111
US006976054Bl

(10) Patent No.: US 6,976,054 BI
Dec. 13, 2005 (45) Date of Patent:

6,246,683 B1 *
6,542,734 B1 *
6,711,178 B1 *

6/2001 Connery et al. 370/392
4/2003 Abrol et al. 455/412.1
3/2004 O'Gorman et al. 370/473

* cited by examiner

Primary Examiner-Viet D. Vu
Assistant Examiner-Jinsong Hu
(74) Attorney, Agent, or Firm-Withrow & Terranova,
PLLC

(57) ABSTRACT

A method and system provides access to information about
a resource associated with a network device. The method
and system selects a layer for communicating with the
requested resource associated with the network device in a
network protocol stack having multiple layers, establishes
an inner layer socket for communicating at the selected layer
using an inner layer application programming interface (IL
API) and a socket identifier associated with the requested
resource, wherein the inner layer socket communicates
using the selected layer and bypasses other layers in the
network protocol stack, transmits the request for information
about the resource through the inner layer socket and the
socket identifier, receives the information about the resource
in response to the transmission made through the inner layer
socket, and passes the information about the resource
through the inner layer socket to the application making the
request.

32 Claims, 6 Drawing Sheets

(Start

602 J
~ Receive A Request From An

Application For Information About A
Resource On A Network Device

J
~ Request Selects A Layer for

Communicating With The Requested

604

Resource On The Network Device

~
~ Application Establishes An Inner

Layer Socket For Communicating At

606

The Selected Layer Using IL API

~
~

Inner Layer Socket Transmits The
Request For Information About The

608

Resource On The Network Device

~
~

IL API Passes The Information
About The Resource To The

610

Application Making The Request

+
(End

u.s. Patent Dec. 13, 2005 Sheet 1 of 6 US 6,976,054 BI

0::
IP

« 1---....-----'
J I , V 106 il 134 V 112

I

116 l 122
~ i . ""r .--=------,

...J

I
Data Link 'Data Link Data Link Data Link

\108 124/

'" 126

100/

FIG. 1

u.s. Patent Dec. 13, 2005 Sheet 2 of 6

202

204

206

Transport Layer

OTHER
TCP UOP TRANSPORT

Application

Inner Layer API

208

Network Layer

Appletalk IPV4 IPV6 IPX

218

FIG. 2

US 6,976,054 BI

210

Data Link Layer

FOOl Ethernet

228

u.s. Patent Dec. 13, 2005 Sheet 3 of 6 US 6,976,054 BI

300\
314 302 \ 316

:---------------- -------------------------_\._-------------- -------------------.------------;

I Application Application La~~~ 5- !
i 7 i : ______________________ . ________________ . __ J

r--- --------- -----

IP

312

Inner Layer
Application Programming

Interface
(IL API)

r------,
TCP 334

Socket

IP

324 322 326 328
308

: -....................... ~ ... -... -.. _ _-----------------:

! :

i....... . .. 330_ .. ~ataLln: Pt~~~ral_......33;SI1~yer ·
Ethernet
Header

310

IP TCP
Header Header

FIG. 3

Data
Ethernet
Trailer

u.s. Patent Dec. 13,2005 Sheet 4 of 6 US 6,976,054 BI

400

~

402~

MEMORY 414

Application /
V 416

Inner Layer API
/418

Inner Layer Extensions

Virtual Machine Runtime /420 404~
Environment /422

TCP/IP /423 Processor
Network Resources /424
Operating System

/412

Network
Secondary Input-Output

Communication
Port

Storage Ports

406/ 408/ 410/

FIG. 4

u.s. Patent Dec. 13, 2005 Sheet 5 of 6 US 6,976,054 BI

Start

502
1,.

\ Create Datagram For Transmission
Over Network

504
r

\ Select Network Layer To Establish
Communication

506 1r

\ Open Socket At Selected Layer Of
Network Protocol Using I L API

508
,r

\ Communicate At Selected Layer
Using IL API Socket

,r

End

FIG. 5

u.s. Patent Dec. 13,2005 Sheet 6 of 6 US 6,976,054 BI

Start

602 " ~ Receive A Request From An
Application For Information About A

Resource On A Network Device

604
r

~ Request Selects A Layer for
Communicating With The Requested

Resource On The Network Device

606 " ~ Application Establishes An Inner
Layer Socket For Communicating At

The Selected Layer Using IL API

608
r

~ Inner Layer Socket Transmits The
Request For Information About The
Resource On The Network Device

610 "

""
IL API Passes The Information
About The Resource To The

Application Making The Request

,r
End

FIG. 6

US 6,976,054 Bl
1

METHOD AND SYSTEM FOR ACCESSING
LOW-LEVEL RESOURCES IN A NETWORK

DEVICE

2
fier associated with the requested resource, wherein the inner
layer socket communicates using the selected layer and
bypasses other layers in the network protocol stack, trans­
mits the request for information about the resource through

FIELD OF THE INVENTION

The present invention relates to the field of computer data
networking and a method and system for accessing low­
level resources in a network device.

5 the inner layer socket and the socket identifier, receives the
information about the resource in response to the transmis­
sion made through the inner layer socket, and passes the
information about the resource through the inner layer
socket to the application making the request.

10
BACKGROUND OF THE INVENTION

The use of layered data communications protocols pro­
motes system interoperability, vendor portability and sim­
plicity in system integration. Each protocol layer operates at 15

a different layer of abstraction and performs different types
of data manipulation and formatting. Because each layer is
concerned with events at its own level of abstraction,
different software designers can work together to design the
protocols. Layers of the network protocol can also replaced 20

individually without significant communication incompat­
ibilities problems arising.

The Internet Protocol (IP) stack or IP stack is a widely
used layered communication protocol. Applications use the
IP stack to transmit and receive data over a variety of 25

different local and wide area networks. Typically, a trans­
mitting application passes application data to a transport
layer in the IP stack, which in turn adds routing information

BRIEF DESCRIPTION OF THE DRAWINGS

The features and aspects of the present invention will
become more fully apparent from the following detailed
description, appended claims, and accompanying drawings
in which:

FIG. 1 is a block diagram illustrating a network using an
inner layer application programming interface (IL API) to
communicate between nodes on the network.

FIG. 2 is a block diagram demonstrating the various
protocols an application can interface with using the ILAPI.

FIG. 3 is a block diagram illustrating how the IL API
works to provide access to the Internet Protocol (IP) stack.

FIG. 4. is a block diagram depicting a computer system
that provides the IL API and IP stack to applications.

FIG. 5 is a flow-chart diagram illustrating the operations
associated with communicating over the IP stack using the
ILAPI.

to the data and passes the results to a data link layer. The data
link layer also adds additional header information and passes
the resulting information to a physical layer, where it is
finally transmitted over the network.

FIG. 6 is a flow-diagram depicting the operations used to
30 access information about a resource associated with a net-

A receiving application associated with a receiving IP
stack receives and processes the information. Each layer of
the receiving IP stack performs various communication 35

functions and format conversions in reverse going from the
physical layer, the data link layer, the network layer, the
transport layer, and then to the receiving application. In a
conventional network, applications send and receive mes­
sages from each other and use the IP stack as a conduit for 40

data. Notwithstanding these messages, other information
being transmitted between the sending and receiving IP
stacks is not typically made available to either the sending
or receiving applications.

While layered protocols such as used in a conventional IP 45

stack have some advantages, they are typically obtained by
lowering programmatic flexibility. For example, application
data is encapsulated with protocol-generated headers whose
content cannot be accessed and controlled by the application
itself. Applications are masked from the inner operation of 50

a network protocol and network operation. This inflexibility
makes it difficult for an application to send data encapsulated
with a non-standard header when required or monitor opera­
tion of the network.

work device.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a block diagram illustrating a network 100 using
an inner layer application programming interface (ILAPI) to
communicate between nodes on network 100. Network 100
includes a transmit application 102 with a corresponding
TCP/IP stack 104, a data link layer 106 and an inner layer
application programming interface (IL API) 108 facilitating
communication between transmit application 102 and layers
within TCP/IP stack 104. Further, network 100 also includes
a first intermediate gateway or router node represented by IP
stack 110 and data link layer 112 and a second intermediate
gateway or router node represented by IP stack 114 and data
link layer 116. Receive application 118 in network 100 has
a TCP/IP stack 120, data link layer 122 and an ILAPI 124.
Physical connection 126 provides connection to each of
these nodes through their respective data link layers using a
physical access protocol such as Carrier Sense Multiple
Access/Collision Detect (CSMNCD).

Conventional layered communications provides applica­
tions with application-to-application or peer-to-peer com-

SUMMARY OF THE INVENTION

In one aspect of the invention, a method and system
provides access to information about a resource associated
with a network device. The method and system receives a
request from an application for information about a resource
associated with a network device, selects a layer in a
network protocol stack having multiple layers for commu­
nicating with the requested resource associated with the
network device, establishes an inner layer socket for com­
municating at the selected layer using an inner layer appli­
cation programming interface (IL API) and a socket identi-

55 munication capabilities. Information at the lower layers of
the protocol stack are masked from the application through
abstract interfaces. This simplifies network programming
over the IP stack but does not provide much flexibility if
access to these other layers is desired. ILAPI 108 and ILAPI

60 124 provides this communication capability to both transmit
application 102 and receive application 118. For example,
transmit application 102 and receive application 118 have
access to IP stack 110 and IP stack 114 directly using their
respective IL API. Additionally, transmit application 102

65 and receive application 118 also have access to other pro­
tocollayers, such as data link layer 112 and data link layer
116, using their respective IL API.

US 6,976,054 Bl
3 4

Group Multicast Protocol (IGMP) 324 resources and interact
with routers, switches, hubs, gateways, and hosts commu­
nicating with each other about errors and system control.
ICMP provides message control and error-reporting protocol

FIG. 2 illustrates many different types of network infor­
mation available at these different layers in the protocol
stack. This block diagram illustrates an application 202
passing through an IL API 204 to gain access to a transport
layer 206, a network layer 208, and a data link layer 210. At
transport layer 206, application 202 has access to the trans­
port protocols TCP 212, UDP 214, and other transport 216.
TCP 212 or Transmission Control Protocol is a connection­
oriented protocol that provides a reliable, full-duplex, byte
stream for a user process. Most conventional Internet appli­
cations use TCP 212 and allow TCP 212 to interface with the
IP layers below. UDP 214 or User Datagram Protocol is a
connectionless protocol also for user processes, however, it
does not guarantee that UDP datagrams will ever reach their
intended destination. Because TCP and UDP both access the
IP layer the protocol is often referred to as simply TCP/IP.

5 between a host server and a gateway to the Internet. ICMP
uses Internet Protocol (IP) datagrams that IL API 312
provides to an application. On conventional systems, this
information is processed by the TCP/IP protocol and is not
available directly to the application. IGMP is used to support

10 multicasting between nodes on a network and provides
information to applications through ILAPI 312 in a similar
manner. Application 314 also has access to ARP 326 and
RARP 328 resources. Application 314 opens a socket using
IP Socket 336 interface and establishes a direct connection

Network layer 208 provides application 202 with access
through IL API 204 to information carried over Appletalk
218, IPv4 220, IPv6 222, and IPX 224. These protocols
provide packet delivery services and routing capabilities for
transport protocols such as TCP 212 and UDP 214. Net­
works based on Appletalk 218 and IPX 224 can be integrated

15 with network layer 306. Because application 314 bypasses
transport layer 318, ARP 326 and RARP 328 resources are
exposed and available for application 314 to process. For
example, ARP 326 resources include Media Access Control
(MAC) addresses associated with each Ethernet device on a

20 network.

to work with the TCP and UDP transport protocols. In
addition, routers, switches, hubs and other network devices
exchange status and network routing information describing 25

network layer resources using ICMP (Internet Control Mes­
sage Protocol) and IGMP (Internet Gateway Message Pro­
tocol). Appletalk 218 provides packet delivery services
primarily to computers designed by Apple Computer of
Cupertino, Calif. IPv4 220 (version 4) provides 32-bit 30

addresses and IPv6 222 (version 6) provides 64-bit
addresses in the Internet Protocol (IP) defined in specifica­
tion DOD-SID-I777. Further references to the IP protocol
includes these additional protocols described above.

Application 202 also has access to data link layer 210 35

through ILAPI 204. Fiber distributed data interface (FDDI)
protocol 226 is a standard for data transmission on fiber
optic lines in a local area network. FDDI protocol 226 is
based on the token ring protocol and in addition can support
thousands of users. In addition, application 202 can also 40

access information from Ethernet 228 through IL API 204.
Ethernet 228 is a widely-installed local area network tech­
nology and specifies sharing physical access over coaxial
cable or special grades of twisted pair wires providing a
wide range of transmission speeds. Devices connected to an 45

Ethernet network generally compete for access to the physi-
cal medium using the CSMNCD protocol.

FIG. 3 is a block diagram illustrating how the IL API
works to provide access to a Internet Protocol (IP) stack 300.
IP stack 300 includes application 302, transport layer 304, 50

network layer 306, data link layer 308 each connected to IL
API 312. In one implementation, layers in IP stack 300
produce an Ethernet packet 310 with a data payload and
headers from each of the various layers.

In conventional network communication, application 314 55

and application 316 communicate directly with a network
protocol with either TCP 318 or UDP 320 for a connection
or connectionless type communication. As an alternative,
both application 314 and application 316 can communicate
with transport layer 304 through TCP Socket 334 in ILAPI 60

312. Using IL API 312 to access the transport layer as well
as other inner layers of the network protocol provides a more
uniform interface to the stack.

Application 314 and application 316 can use IL API 312
to access network layer 306 and data link layer 308 in ways 65

previously unavailable. For example, application 314 can
access Internet Control Message Protocol (ICMP)/Internet

Application 314 operates in a similar manner with respect
to data link layer 308. To gain access to data link layer 308,
application 314 establishes a session directly to data link
layer 308 through link socket 338. Once the session through
link socket 338 is created, application 314 has access to
information in data link layer 330 and physical layer 332.
For example, application 314 can create customized headers
for an Ethernet packet 310 creating TCP Header and IP
Header as illustrated in Ethernet packet 310 in FIG. 3.
Ethernet header and Ethernet trailer are added by an Ether­
net type data link layer 330. This provides an application
with additional flexibility when developing network man­
agement software or developing other routines that need
access to lower layers of the network protocol stack.

FIG. 4. is a block diagram depicting a computer system
400 that provides the IL API and IP stack to applications.
Computer system includes a memory 402, a processor 404,
a network communication port 406, a secondary storage
408, and input-output ports 410. Processor can be a general
purpose processor such as manufactured by Intel Corpora­
tion of Santa Clara, Calif. or can be a specialized ASIC or
other type of processor device. Network communication
port 406 can be implemented as a Ethernet card or built-in
communication port on a computer and secondary storage
408 is a hard-disk, CDROM, or other mass storage device.
Input-output ports 410 includes ports for corresponding
peripheral devices such as keyboard, mouse, printer, display,
and scanner.

Memory 402 includes an application 414, an inner layer
API (IL API) 416, inner layer extensions 418, virtual
machine runtime environment 420, TCP/IP protocol 422,
network resources 423 and operating system 424. Applica­
tion 414 is an application that can access one or more
different layers of a network protocol stack such as TCP/IP
protocol 422. Generally, application 414 should be a user
application but may need to be run with increased permis­
sions such as "root" or "superuser" due to the sensitive
information accessible within the inner layers of TCP/IP
protocol 422.

Inner layer API 416 is the interface routines linked into
application 414 that provides direct access to the transport,
the network, data link layers and physical layers in the
protocol stack. Inner layer extensions 418 include any
supporting routines necessary to make the IL API 416
available on the given platform. In some cases, this could
involve recompiling an operating system kernel to include
these particular functionalities not previously available to

US 6,976,054 Bl
5

applications. In an object-oriented implementation, such as
using the Java programming language by Sun Microsystems

6

of Mountain View, Calif., these extensions can be dynami­
cally loaded at run-time or immediately when they are
loaded into the overall system. Because Java allows 5

dynamic loading of routines, inner layer extensions 418 can
be loaded as application 414 requires.

The application then opens a socket at the selected layer
of the network protocol using the IL API (506). Often, the
communication occurs over a "raw" type of socket rather
than a "cooked" socket. The information is considered raw
because control characters and other information in the data
stream are not stripped out or interpreted by other programs
before being delivered to the application. For example, two
common types of packets sent or received over raw sockets
are ICMP packets and IGMP packets. Specific resources

Virtual machine runtime environment 420 is typically
used with an object-oriented programming language such as
Java. If a non-object oriented or interpreted programming
language is not being used, then virtual machine runtime
environment 420 may not be required. For Java, a Java
Virtual Machine or JVM simulates a virtual machine and
provides hardware independent computing capabilities in
addition to dynamic loading of libraries, applications, and
applets in real-time over a network.

TCP/IP 422 is the conventional layered protocol stack
typically available on most computers and computer-like
platforms. As previously mentioned, TCP/IP generally only
provides applications with access to the transport layer but
with ILAPI 416, application 414 accesses the network layer,
the data link layer, and the physical layer in addition to the
transport layer. Network resources 423 represents the vari­
ous tables and other network resources on a network device.
These resources include information stored in routing tables,
ARP tables, ICMP/IGMP related tables, tables for storing
physical port information and any other tables or resources
used to manage and or describe an aspect of a network
device.

Operating system 424 manages resources on computer
system 400 so they are used efficiently and uniformly.

FIG. 5 is a flow-chart diagram illustrating the operations
associated with communicating over the IP stack using the
IL API. Initially, an application creates a datagram to be
transmitted over a network (502). The datagram or packet is
self-contained, independent entity of data carrying sufficient
information to be routed from the source to the destination
computer without reliance on earlier exchanges between this
source and destination computer and the transporting net­
work. The packet needs to be self-contained without reliance
on earlier exchanges because there is no connection of fixed
duration between the two communicating points as there is,

10 such as routing tables, ICMP and IGMP tables are identified
with predetermined or well-known socket identifiers. Appli­
cations open an inner layer socket using these specific socket
identifiers to access the information in these particular
resources. Alternatively, the application can open inner layer

15 sockets with other socket identifiers to intercept other types
of information being transmitted across the particular net­
work protocol layer.

Communication continues between the application and
the selected layer or specific resource until the application

20 ends or the connection is terminated (508).
FIG. 6 is a flow-diagram depicting the operations used to

access information about a resource associated with a net­
work device. Initially, a network device receives a request
from an application for information about a resource asso-

25 ciated with a network device (602). The resource can be a
routing table, a table with ICMP or IGMP information, a
table of physical ports on a network device, an ARP table of
MAC addresses or any other resource associated with a
network device. The request typically selects a layer in a

30 network protocol stack for communicating with the
requested resource on the network device (604). The appli­
cation then establishes an inner layer socket for communi­
cating at the selected layer using an inner layer application
programming interface (IL API) and a socket identifier

35 associated with the requested resource (606). The inner layer
socket communicates using the selected layer and bypasses
other layers in the network protocol stack. Once established,
the inner layer socket transmits the request for information
about the resource through the inner layer socket and the

40 socket identifier (608). The ILAPI receives the information
about the resource from the network device in response to
the transmission made through the inner layer socket (610)
and passes the information about the resource through the

for example, in most voice telephone conversations. This
kind of protocol is therefore referred to as connectionless. 45

inner layer socket to the application making the request.
In one implementation using the Java object-oriented

programming environment, an application may contain
source code that generates and utilizes Java link layer
sockets as shown in the following code example A.

Given several layers to communicate with, application
selects a network layer to establish communication (504). In
part, the layer selected depends on the type of datagram the
application has created. If the application creates a transport
session using a transport socket such as TCP 334 in FIG. 3, 50

the application provides the data and necessary headers.
However, a network session uses a network socket such as
IP Socket 336 in FIG. 3 and the application needs to create
the appropriate network layer TCP header or UDP header
around the data or payload section of each packet. Similarly, 55

if the application creates a link layer session using link
socket 338 then the application must also include IP header
information in the packet.

Code Example A
Ethernet Packet ep=New Ethernet Packet (data, destina­

tion Ethernet Address);
Ethernet Socket s=New Ethernet Socket (source Ethernet

Address);
Byte size;
Byte buffer=new byte[size];

s.send(ep);
s.rcv(buf);

The Code Example A details the use of a combination
60 send/receive Java link layer socket "s" whose address is

"source Ethernet Address". A datagram packet "ep" is cre­
ated for use in an Ethernet networking environment, where
"ep" is intended to be sent to a destination "destination
Ethernet Address". A receive buffer "buf' is created for

The application also selects a layer in the network pro­
tocol stack depending on the layer a resource associated with
the network device uses for communication. For example,
the ICMP and IGMP tables are resources that use the IP
protocol because they communicate at the network layer in
the protocol stack. Similarly, an ARP table is a resource that
uses the link layer to communicate information about the 65

network device, in particular an Ethernet or MAC address of
the network device.

socket "s", and given size "size". After "ep" is sent by Java
link layer socket "s", Java link layer socket "s" receives any
return packets in buffer "buf".

US 6,976,054 Bl
7

Another example of the use of Java link layer sockets is
given below in code example B.

Code Example B
Ethernet Address destination new Ethernet Address;
Ethernet Address source=new Ethernet Address;
Byte []buf=new byte [2000];
Ethernet Packet ep=new Ethernet Packet (buf, destina­

tion);
//put the data into the buffer buf

Ethernet Socket es=new Ethernet Socket (source);
es.send(ep);
es.receive(ep);

//now look at data in the buffer buf

8
through instructions executable on a virtual-machine
compatible with the multiple layer network protocol
stack.

2. The method of claim 1, wherein the header information
5 includes header information associated with a transport layer

and the inner layer socket is a transport socket.
3. The method of claim 2, wherein the multiple layer

network protocol stack is compatible with TCP/IP and the
transport socket is compatible with a TCP or UDP transport

10 layer protocol.
4. The method of claim 1, wherein the header information

includes header information associated with a network layer
and the inner layer socket is a network socket.

In the code example B, a buffer "buf" is utilized as a
bi-directional send/receive buffer for supporting the socket 15

5. The method of claim 4, wherein the multiple layer
network protocol stack is compatible with TCP/IP and the
network socket is compatible with an IP network layer
protocol.

"es".
While specific implementations have been described

herein for purposes of illustration, various modifications
may be made without departing from the spirit and scope of
the invention. For example, implementations and examples
are provided with reference to TCP/IP however, an alternate
implementation could also be adapted to work with the Open
Systems Interconnection (OSI) network model. In the OSI
communication model, IP is in layer 3, and other layers are
as illustrated in FIG. 3. Inner sockets for the transport,
network and data link layer are described but an inner socket
for a physical layer could also be implemented. The physical
layer would provide information about the ports on a net­
work device and information about the physical media being
used. Additional implementations could be created using
conventional procedural programming languages such as
"c" as well as object-oriented programming environments/
languages such as Java or C++. Furthermore, although
aspects of the present invention are described as being stored
in memory and other storage mediums, one skilled in the art
will appreciate that these aspects can also be stored on or
read from other types of computer-readable media, such as
secondary storage devices, like hard disks, floppy disks, or
CD-ROM; a carrier wave from the Internet; or other forms
of RAM or ROM. Accordingly, the invention is not limited
to the above-described embodiments, but instead is defined
by the appended claims in light of their full scope of
equivalents.

What is claimed is:
1. A method for communicating over a network protocol

stack in a network, the method comprising:
creating a packet through an application, the packet being

6. The method of claim 1, wherein the header information
includes header information associated with a link layer and

20 the inner layer socket is a link socket.
7. The method of claim 6, wherein the multiple layer

network protocol stack is compatible with TCP/IP and the
link socket is compatible with a link layer protocol.

8. The method of claim 1, wherein selecting a layer in the
25 multiple layer network protocol stack further includes

selecting the layer in the multiple layer network protocol
stack based on a type of the packet created by the applica­
tion.

9. The method of claim 1, wherein the IL API further
30 provides a transport socket to access transport layer infor­

mation in the multiple layer network protocol stack, a
network socket to access network layer information in the
multiple layer network protocol stack, a link socket to access
link layer information in the multiple layer network protocol

35 stack, and a physical socket to access physical port infor­
mation in the multiple layer network protocol stack.

10. The method of claim 1, wherein the IL API further
provides a different socket communication interface for each
layer of communication available in the multiple layer

40 network protocol stack.
11. The method of claim 1, wherein the object-oriented

instructions are compatible with a Java programming lan­
guage.

12. The method of claim 11, wherein the application
45 contains source code that generates and utilizes Java link

layer sockets.

a self-contained, independent entity of data including
header information for routing the packet to from a 50

source to a destination, the header information being
associated with a layer in a multiple layer network
protocol stack;

13. The method of claim 1, further comprising transmit­
ting the packet from the source to the destination over the
network based on the header information in the packet.

14. The method of claim 13, wherein the header infor­
mation includes header information for routing the packet
from a source computer to a destination computer.

15. An apparatus for communicating over a network
protocol stack in a network, the apparatus comprising: selecting a layer in the multiple layer network protocol

stack for communicating with the application; 55
establishing an inner layer socket for communication

between the application and the selected layer using an
inner layer application programming interface (IL
API), wherein the communication between the appli­
cation and the selected layer bypasses other layers in 60

the multiple layer network protocol stack; and
transmitting the packet including the header information

from the application to the selected layer through the
inner layer socket;

wherein the application communicates with the IL API 65

using object-oriented instructions and the ILAPI inter­
faces with the multiple layer network protocol stack

a processor;
a memory for storing instructions when executed on the

processor that causes the processor to,
create a packet through an application, the packet being

a self-contained, independent entity of data including
header information for routing the packet from a
source to a destination, the header information being
associated with a layer in a multiple layer network
protocol stack;

select a layer in the multiple layer network protocol
stack for communicating with the application;

establish an inner layer socket for communication
between the application and the selected layer using

US 6,976,054 Bl
9

an inner layer application programming interface (IL
API), wherein the IL API is distinct from the appli­
cation, and wherein the communication between the
application and the selected layer bypasses other
layers in the multiple layer network protocol stack; 5

and
transmit the packet including the header information

from the application to the selected layer through the
inner layer socket.

16. The apparatus of claim 15, wherein the header infor- 10

mation includes header information associated with a trans­
port layer and the inner layer socket is a transport socket.

17. The apparatus of claim 16, wherein the multiple layer
network protocol stack is compatible with TCP/IP and the
transport socket is compatible with a TCP or UDP transport 15

layer protocol.
18. The apparatus of claim 15, wherein the header infor­

mation includes header information associated with a net­
work layer and the inner layer socket is a network socket.

19. The apparatus of claim 18, wherein the multiple layer 20

network protocol stack is compatible with TCP/IP and the
network socket is compatible with an IP network layer
protocol.

20. The apparatus of claim 15, wherein the header infor­
mation includes header information associated with a link 25

layer and the inner layer socket is a link socket.
21. The apparatus of claim 20, wherein the multiple layer

network protocol stack is compatible with TCP/IP and the
link socket is compatible with a link layer protocol.

22. The apparatus of claim 15, wherein the instructions to 30

cause a processor to select a layer in a network protocol
stack further includes instructions to cause the processor to
select the layer in the network protocol stack based on a type
of the packet created by the application.

23. The apparatus of claim 15, wherein the ILAPI further 35

provides a transport socket to access transport layer infor­
mation in the multiple layer network protocol stack, a
network socket to access network layer information in the
multiple layer network protocol stack, a link socket to access
link layer information in the multiple layer network protocol 40

stack, and a physical socket to access physical port infor­
mation in the multiple layer network protocol stack.

24. The apparatus of claim 15, wherein the ILAPI further
provides a different socket communication interface for each
layer of communication available in the multiple layer 45

network protocol stack.
25. The apparatus of claim 15, wherein the application

communicates with the ILAPI using object-oriented instruc­
tions and the IL API interfaces with the multiple layer
network protocol stack through instructions executable on a 50

virtual-machine compatible with the multiple layer network
protocol stack.

10
mit the packet from the source to the destination over the
network based on the header information in the packet.

28. The apparatus of claim 27, wherein the header infor­
mation includes header information for routing the packet
from a source computer to a destination computer.

29. An apparatus for accessing information about a
resource associated with a network device, comprising:

means for creating a packet through an application, the
packet being a self-contained, independent entity of
data including header information for routing the
packet from a source to a destination, the header
information being associated with a layer in a multiple
layer network protocol stack;

means for selecting a layer in the multiple layer network
protocol stack for communication with the application;

means for establishing an inner layer socket for commu­
nication between the application and the selected layer
using an inner layer application programming interface
(IL API), wherein the IL API is distinct from the
application, and wherein the communication between
the application and the selected layer bypasses other
layers in the multiple layer network protocol stack; and

means for transmitting the packet including the header
information from the application to the selected layer
through the inner layer socket.

30. The apparatus of claim 29, further comprising means
for transmitting the packet from the source to the destination
over a network based on the header information in the
packet.

31. A computer program, tangibly stored on a computer­
readable medium, comprising instructions for communicat­
ing over a network protocol stack in a network, the computer
program comprising instructions to:

create a packet through an application, the packet being a
self-contained, independent entity of data including
header information for routing the packet from a source
to a destination, the header information being associ­
ated with a layer in a multiple layer network protocol
stack;

select a layer in the multiple layer network protocol stack
for communicating with the application;

establish an inner layer socket for communication
between the application and the selected layer using an
inner layer application programming interface (lL
API), wherein the IL API is distinct from the applica­
tion, and wherein the communication between the
application and the selected layer bypasses other layers
in the multiple layer network protocol stack; and

transmit the packet including the header information from
the application to the selected layer through the inner
layer socket.

32. The computer program of claim 31, further compris­
ing instructions to transmit the packet from the source to the
destination over the network based on the header informa-

26. The apparatus of claim 25, wherein the object-ori­
ented instructions are compatible with a Java programming
language. 55 tion in the packet.

27. The apparatus of claim 15, wherein the instructions
further includes instructions to cause the processor to trans- * * * * *

