
(12) United States Patent

(54)

(75)

Duncan et al.

METHOD AND APPARATUS FOR
DYNAMICALLY LOADING AND MANAGING
SOFTWARE SERVICES ON A NETWORK
DEVICE

Inventors: Robert J. Duncan, San Francisco, CA
(US); Tal I. Lavian, Sunnyvale, CA
(US)

(73) Assignee: Nortel Networks Limited (CA)

(*) Notice: Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 586 days.

(21) Appl. No.: 091709,830

(22) Filed: Nov. 9, 2000

Related U.S. Application Data

(60) Provisional application No. 601190,729, filed on Mar.
20,2000.

(51) Int. Cl.
G06F 15116 (2006.01)

(52) U.S. Cl. 7091249; 709/316
(58) Field of Classification Search 709/220-226,

(56)

709/246,228,249,238,250,299,104,203,
709/245,219,234,240; 705/26,14; 717111,

7171178, 174, 171, 173; 380/277; 3451709,
3451763,522; 718/104; 370/401,352,236,
370/489,255,260,409; 719/316; 704/277;

340/825; 71011; 7151745; 7111113
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,058,108 A *
5,440,740 A *
5,483,654 A *
5,550,984 A *
5,561,752 A *
5,604,914 A *
5,640,530 A *

1011991 Mann et al. 370/409
811995 Chen et al. 718/104
111996 Staron et al. 345/763
811996 Gelb 709/245

1011996 Jevans 345/522
211997 Kabe 710/1
611997 Beardsley et al. 711/113

.: 1\ IiIiiI;aS
104~

111111 111
US007127526Bl

(10) Patent No.: US 7,127,526 Bl
Oct. 24, 2006 (45) Date of Patent:

5,678,002 A *
5,809,145 A *
5,892,824 A *
5,954,797 A *
6,009,274 A *
6,049,671 A *
6,055,512 A *
6,081,513 A *
6,085,030 A *
6,092,107 A *

10/1997 Fawcett et al. 345/709
9/1998 Slik et aI 705/52
4/1999 Beatson et al. 713/186
9/1999 Sidey 709/223

12/1999 Fletcher et al. 717/173
4/2000 Slivka et al. 717/173
4/2000 Dean et al. 705117
6/2000 Roy 370/260
7/2000 Whitehead et al. 709/203
7/2000 Eleftheriadis et al. 709/217

(Continued)

OTHER PUBLICATIONS

An implementation of customizable services with Java/ORB inte­
gration Tomono, M.; Yamanaka, A.; Tonouchi, T.; Nakajima S.;
Global Telecommunications Conference, 1997. GLOBECOM '97.,
IEEE, vol. 3, Nov. 3-8, 1997.*

(Continued)

Primary Examiner-Thong Vu
(74) Attorney, Agent, or Firm-McGuinness & Manaras
LLP

(57) ABSTRACT

The present invention relates to an apparatus and method for
dynamically loading and managing software services on a
network device. A service environment ported to the net­
work device includes a service environment kernel and a
virtual machine. The service environment kernel continually
operates on the network device and manages the download­
ing of services from a remote location onto the network
device. In accordance with a request from a remote client
such as a network manager, the service environment kernel
causes instructions corresponding to the downloaded service
to be provided to the virtual machine for execution on the
network device. Associated with the service are service
relationships. The service environment kernel manages
these relationships by maintaining a registry of services and
their dependencies on other services. The service environ­
ment kernel also controls the execution of services in
accordance with the service relationships.

Network
200

44 Claims, 5 Drawing Sheets

US 7,127,526 Bl
Page 2

u.s. PATENT DOCUMENTS 200110025260 Al *
2003/0131252 Al *
2005/0038903 Al *
2006/0025206 Al *

912001 Blumofe 705/27

6,098,089 A *
6,195,432 Bl *
6,199,204 Bl *
6,226,692 Bl *
6,233,611 Bl *
6,256,393 Bl *
6,308,206 Bl *
6,308,326 Bl *
6,314,565 Bl *
6,347,398 Bl *
6,363,421 Bl *
6,370,573 Bl *
6,385,175 Bl *
6,411,995 Bl *
6,442,620 Bl *
6,487,170 Bl *
6,496,802 Bl *
6,510,513 Bl *
6,560,656 Bl *
6,563,793 Bl *
6,604,140 Bl *
6,633,848 Bl *
6,754,219 Bl *
6,757,729 Bl *
6,766,301 Bl *
6,771,290 Bl *
6,779,030 Bl *
6,789,126 Bl *
6,810,427 Bl *
6,842,901 Bl *
6,845,393 Bl *
6,865,178 Bl*
7,003,495 Bl *
7,062,461 Bl *

8/2000 O'Connor et al. 718/104
212001 Takahashi et al 3801277
3/2001 Donohue 717/178
5/2001 Miloushev et al. 719/316
5/2001 Ludtke et al. 7091223
7/2001 Safadi et al. 3801232

1012001 Singh 7091223
10/2001 Murphy et al. 717/174
11/2001 Kenner et al. 717/171
212002 Parthasarathy et al. 717/178
3/2002 Barker et al. 7091223
4/2002 Bowman-Amuah 7091223
5/2002 Dove 3701255
6/2002 Gebauer 7091219
8/2002 Thatte et al. 719/316

11/2002 Chen et al. 3701231
12/2002 van Zoest et al. 705/14

112003 Danieli 713/156
512003 O'Sullivan et al. 7091250
5/2003 Golden et al. 3701236
8/2003 Beck et al 7091226

1012003 Johnson et al. 704/277
6/2004 Cain et al. 370/401
6/2004 Devarakonda et al 7091226
7/2004 Daniel et al. 705/14
8/2004 Hoyle 7151745
8/2004 Dugan et al. 7091223
912004 Saulpaugh et al. 7091245

1012004 Cain et al. 7091238
112005 Miller 718/104
112005 Murphy et al. 7091220
3/2005 Eugel et al. 370/352
212006 Burger et al. 705/50
6/2006 Ausubel 705/37

7/2003 Barton 713/193
212005 Venemans 7091234
212006 Walker et al. 463/20

OTHER PUBLICATIONS

Dynamic Class Loading in the Java Virtual Machine-Liang,
Bracha (1998) ; java.sun.comlpeople/gbrachalclassloaders.ps.* .
OS Support for General-Purpose Routers-Peterson, Karim, Ll
(1999); www.cs.princeton.edu/nsg/papers/hotos99.ps. *
Dynamic Agents-Chen, Chundi, Dayal, Hsu (1999) ; www.hpl.
hp.comlorg/stl/ dmsdlpublications/agent~ .pdf. * .
The MetaCrawler Architecture for Resource AggregatIOn on the
Web-Selberg, Etzioni (1997); www.cs.washington.edu/homes/
speedipaperslieeelieee-metacrawler.ps. *
The State of Service Protocols-Moorman, Lockwood, Kang
(2000) ; iwander.vlsi.uiuc.edu/wireless/papers/networkOO.ps. *
An Application of Mobile Agents as Personal Asslstents .. -Roth,
Jalali.. (2000) ; www.igd.fhg.de/-vroth/papers/vrothOOa_paam.

pdf. * . .
The Simple Times, vol. 7, No.1, Mar. 1999; www.slmple-tJmes.
org/pub/simple-timeslissues17 -1.html. *
browsers.webhack.comlmozillalmI3/mI3 -detail.html. *
www.ieff.orglrfclrfc2593.txt; www.ietf.orglrfc/rfc2593.txt.*
An Architecture for a Secure Service Discovery
Service-Czerwinski, Zhao, Hodes .. (1999) daedalus.cs.berkeley.
edu/publications/sds-mobicom99 .ps.gz. * .
An Architecture for Next Generation Middleware-Blalf, Coulson,
Robin .. (1998) ftp.comp.lancs.ac.uk/pub/mpglMPG-98-27,ps.Z.*
PLANet: An Active Internetwork-Michael Hicks (1999) www.cs.
wisc .edu/ -cs640-1Ipapers/planet -act -net. ps. *
Hive: Distributed Agents for Networking Things-Minar, Gray,
Roup, Krikorian.. (1999) nelson.www.media.mit.edu/people/
nelson/research/hive-asama99/hive-asama99 .ps.gz. *

* cited by examiner

u.s. Patent Oct. 24, 2006

FIG. 1
(PRIOR ART)

FIG. 2

Sheet 1 of 5

Network
100

204

Network
200

US 7,127,526 Bl

u.s. Patent

202
-~

Memory
312

Oct. 24, 2006 Sheet 2 of 5

FIG. 3 B us 314L
Services 324

Service Environment 322

APIs 320

Device Code 318

Operating System 316

Module 408

US 7,127,526 Bl

CPU 302

Switch Fabric Switch
304 t-- Ports 306

Storage 308

Network
Port 310

Module 408
Module 408

Service Environment Kernel
402

Virtual Machine
404

Service Environment 322

FIG. 4

Device API Extensions
406

402 e
•

~ Service
....

Uninstall ...
7Jl
•

504

r--..... .-" Service Network
Service ...

Loader Interface .-.... .-Store
506 510

502

0
(')

:-+------. To N
~ ... 100
N
0

'-..

t
0
0\

,Ir

Service ~ Service
... Launcher Manager ..

508 512 ...

t--
,Ir

----Service
Registry

514

FIG. 5

u.s. Patent Oct. 24, 2006

Launch service
environment

S602

Configure initial
set of services

S604

Initialize and
update registry

S606

Execute new
service and

update registry
S620

Sheet 4 of 5

FIG. 6

US 7,127,526 Bl

Download
service
S612

Issue error
report S618

700

~ Services 324 <III

e
•
7Jl
•

702 Service Environment 322

CPU System 710
1 New rules t

Switching Fabric 712

t t t
Forwarding Forwarding Forwarding
Rules 716 Rules 716 Rules 716

704

Forwarding Forwarding Forwarding
Processor 718 Processor 718 Processor 718

Statistics & Statistics & Statistics &
Monitors 720 Monitors 720 Monitors 720

r
t • 714 t •... t •

FIG. 7

US 7,127,526 Bl
1

METHOD AND APPARATUS FOR
DYNAMICALLY LOADING AND MANAGING

SOFTWARE SERVICES ON A NETWORK
DEVICE

CROSS-REFERENCE TO RELATED
APPLICATIONS

2
SUMMARY OF THE INVENTION

The present invention relates to an apparatus and method
for dynamically loading and managing software services on
a network device. A service environment ported to the
network device includes a service environment kernel and a
virtual machine. The service environment kernel continually
operates on the network device and manages the download­
ing of services from a remote location onto the network

The present application is based on, and claims priority
from, U.S. Provisional Appln. No. 601190,729, filed Mar. 20,
2000.

FIELD OF THE INVENTION

10 device. In accordance with a request from a remote client
such as a network manager, the service environment kernel
causes instructions corresponding to the downloaded service
to be provided to the virtual machine for execution on the
network device. Associated with the service are service

The present invention relates to network device configu­
ration and monitoring, and more particularly, to a method
and apparatus for dynamically loading and managing soft­
ware services on an embedded device.

15 relationships. The service environment kernel manages
these relationships by maintaining a registry of services and
their dependencies on other services. The service environ­
ment kernel also controls the execution of services in
accordance with the service relationships so as to guarantee

BACKGROUND OF THE INVENTION

20 the modular and effective alteration of the behavior of the
network device.

In accordance with one aspect of the invention, a method
for performing a service on a network device, comprising
the steps of installing the service on the network device from Computer networks continue to proliferate. As they do so,

they become increasingly complex and difficult to manage.
This problem is exacerbated when a variety of network
devices, computers, and software are combined together to
integrate large intranets with the Internet.

25 another location, the service having a corresponding set of
service relationships, checking the service relationships of
the loaded service against a stored registry of relationships,
and causing the service to be executed on the network device

As shown in FIG. 1, a conventional network 100 includes if the service relationships can be resolved.
In accordance with another aspect of the invention, a

network device for locally performing a service, comprises
means for installing the service on the network device from
another location, the service having a corresponding set of
service relationships, means for checking the service rela-

one or more network devices 102 such as switches, routers, 30

hubs, multiplexers and similar devices capable of processing
fixed-length or variable-length packets in a network. Net­
work devices 102 may further communicate with hosts 104
via a local area network, for example. Network manager 106
also communicates with network devices 102 via the net­
work 100.

To manage the network 100, network manager 106 gen­
erally polls network devices 102 using protocols such as
SNMP to access information in the device's management 40

information base (MIB). The manager 106 thus needs to
know all the MIBs supported by each device, which is
especially problematic if the network includes devices of
various different types or from various different manufac­
turers. Further, polling requires that the network manager 45

send many messages of the same type to each device and
continually over a period of time. This floods the network
and can downgrade the network's performance, as well as
burdening the network manager 106 with highly repetitive
and duplicative tasks.

35 tionships of the loaded service against a stored registry of
relationships, and means for causing the service to be
executed on the network device if the service relationships
can be resolved.

In accordance with another aspect of the invention, a
network device for locally performing a service, comprises
a network interface adapted to install the service on the
network device from another location, the service having a
corresponding set of service relationships, a registry of
service relationships, a service manager coupled to the
network interface and the registry that is adapted to check
the service relationships of the loaded service against the
registry, and a service launcher coupled to the service
manager that is adapted to cause the service to be executed
on the network device if the service relationships can be

50 resolved.
Moreover, the forwarding and control capabilities of

conventional network device 102 are also statically con­
strained by the routing software and control software pre­
loaded on the device 102. Although many conventional
devices include means for effecting software updates (for 55

example, by downloading software via FTP), such updates
must be carefully performed and monitored for each device
in the network, usually manually by the network manager
106. Such updates require much manager intervention, are
risky to perform, require de-commissioning the device dur- 60

ing updating, and require a period of verification after
updating, thus making network management and perfor­
mance even more problematic. Further, although some
updates may only affect certain individual modules, gener­
ally the whole code has to be swapped out to install the 65

updated modules, rather than just the updated modules
themselves.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features, aspects, and advantages
of the present invention will become more apparent from the
following detailed description when read in conjunction
with the following drawings, wherein:

FIG. 1 is a block diagram illustrating how network
devices are managed in a conventional network;

FIG. 2 is a block diagram illustrating how network
devices are managed in a network in accordance with an
embodiment of the present invention;

FIG. 3 is a structural block diagram illustrating an
example of a network device in accordance with an embodi­
ment of the present invention;

FIG. 4 is a functional block diagram illustrating an
example of a service environment in a network device such

US 7,127,526 Bl
3

as that illustrated in FIG. 3 in accordance with an embodi­
ment of the present invention;

FIG. 5 is a functional block diagram illustrating an
example of a service environment kernel that can be
included in a service environment such as that illustrated in
FIG. 4 in accordance with an embodiment of the present
invention;

FIG. 6 is a flowchart illustrating an example of a method
for locally performing a service on a network device in
accordance with an embodiment of the present invention;
and

FIG. 7 is a block diagram illustrating an example of a
network device in accordance with an embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention will now be described in detail with
reference to the accompanying drawings, which are pro­
vided as illustrative examples of preferred embodiments of
the present invention. Notably, the implementation of certain
elements of the present invention may be accomplished
using software, hardware or any combination thereof, as
would be apparent to those of ordinary skill in the art, and
the figures and examples below are not meant to limit the
scope of the present invention. Moreover, where certain
elements of the present invention can be partially or fully
implemented using known components, only those portions
of such known components that are necessary for an under­
standing of the present invention will be described, and
detailed descriptions of other portions of such known com­
ponents will be omitted so as not to obscure the invention.
Further, the present invention encompasses present and
future known equivalents to the known components referred
to herein by way of illustration.

FIG. 2 illustrates an example of a network 200 configured
in accordance with an embodiment of the present invention.

As shown in FIG. 2, network devices 202 communicate
with an application server 204 and network manager 206. As
in the conventional network 100, network devices 202 may
further communicate with hosts 104 via a local area net­
work, for example.

4
bined with the functionality of manager 306, or perhaps not
included in the same network. Alternatively, a server 204
may actually be another network device 202 that has been
enhanced with server capabilities with dynamic services in
accordance with the present invention. Many other alterna­
tives are possible, and such should become apparent after
those skilled in the art are taught by the present disclosure.

An advantage of the network 202 configured in accor­
dance with the invention is that network management ser-

lO vices can be performed on the network devices themselves,
thus freeing the network manager 206 of duplicative and
repetitive tasks, and reducing the number of network man­
agement messages that may need to be communicated across
the network. For example, a network management service

15 downloaded to a network device 202 may cause the network
device 202 to periodically report on a device variable
relating to network traffic. Thus, instead of network manager
206 having to periodically send a report request message to
each device 202, network manager 206 simply once causes

20 the service to be executed on the network devices of interest,
and then receives all the responses at the desired periods.
Many other alternative network management services and
advantages are possible and should become apparent to
those skilled in the art after being taught by the present

25 disclosure.
FIG. 3 further is a structural block diagram illustrating an

example of a network device 202 in accordance with an
embodiment of the present invention.

As shown, network device 202 includes a CPU 302,
30 switch fabric 304, storage 308, network port 310 and

memory 312 all communicating via a bus 314. Switch fabric
304 further communicates with switch ports 306, which
ports are capable of communicating packets with a network
using network protocols such as TCP/IP and Novell Net-

35 ware, for example. Storage 308 can comprise memory for
storing program and device data and can comprise a variety
of storage media such as RAM, ROM, flash memory, and
magnetic or optical storage media. Network port 310 can
provide a loopback address for access by services and other

40 network management applications. During operation of net­
work device 302, memory 312 includes code for execution
by CPU 310 such as an operating system 316, device code
318, APIs 320, service environment 322 and services 324.
This example network device architecture is intended to be Generally, the present invention allows for the download­

ing of services from application server 204 that can be
dynamically executed on network devices 202, either auto­
matically or under the direction of manager 206. Such
services enhance the functionality of conventional network
devices 102 and can include traffic monitoring and perfor­
mance guarantees (e.g. QOS, uniform latency), intrusion 50

detection, active networking, accounting and billing, closed­
loop feedback, error detection, diagnosis, and remediation.
Such services can further alter the functionality in the
network device to make it available for use in ways previ­
ously unavailable, such as turning a router into a load 55

balancing switch, turning a network database into a web
server, and adding proxy, load balancing, caching, better
security (e.g. VPN), bandwidth allocation, VoIP and unified
communications support to ordinary network devices. It
should be apparent that even further capabilities and appli- 60

cations of the present invention are possible, such as mobile
agents, e-market supply chains and distributed processing
applications.

45 illustrative rather than limiting, and it should be apparent
that additional or fewer components can be included in a
network device while remaining within the spirit of the
present invention.

In accordance with the present invention, service envi­
ronment 322 provides an execution platform through which
services 324 are performed using CPU 302. Service envi­
ronment 322 also facilitates the downloading from applica­
tion server 204 and installation onto device 202 of services
324 and manages their execution on CPU 302. Network
manager 206 can communicate with device 202 to request
device 202 to execute one or more of the services 324.

It should be noted that components corresponding to CPU
302, switch fabric 304, switch ports 306, storage 308,
network port 310, memory 312 (including operating system
316, device code 318 and possibly some of APIs 318) and
bus 314 may also be provided in a conventional network
device 102, or are otherwise well understood by those
skilled in the art. Accordingly, such elements will not be
described here in detail so as not to obscure the invention. Although only one application server 204 and network

manager 206 are shown, it should be noted that there can be 65

several of each, or the server 204 functionality can be
provided together with another network component or com-

Moreover, as should be further apparent from FIG. 3,
adapting a conventional network device 102 in accordance
with the invention may merely require updating memory

US 7,127,526 Bl
5

312 to include executable software having functionality
corresponding to the services 324 and service environment
322 of the invention (possibly as well as some of APIs 504)
as will be described in more detail below.

It should be further noted that, although an implementa­
tion of the present invention in network devices 202 includ­
ing a switch fabric (e.g., switches, routers and hubs) is
considered particularly advantageous, other implementa­
tions of the present invention are possible. Generally, a
network device 202 in accordance with the invention can be 10

6
example, service environment 322 can comprise a single
executable with linked modules 402, 404 and 406, along
with some housekeeping code.

As should be apparent from the above, in the example of
the invention wherein VM 404 includes a Java Virtual
Machine, services 406 are written in the Java programming
language. However, the invention is not limited to this
example and those skilled in the art will understand how to
implement the invention using other programming lan­
guages. Generally, service environment kernel 402 receives
service module code in object fonn and presents it to the VM
for incorporation into the runtime environment of the
device. In the Java programming example, service environ­
ment kernel 402 receives Java byte codes from services 324

considered as any device stationed on the network having an
embedded processor. Accordingly, such devices may further
include database servers, video servers, wireless access
points, firewalls, load balancing switches for a fann of
routers, access routers, etc. A useful application includes the
provision of the functionalities of the present invention in
network devices 202 that are located at "impedance mis­
match" points in the network where network management is

15 and provides them to run on the Java VM 404.
As further shown in FIG. 4, service environment kernel

322 interoperates with services 324, which may further
interoperate with each other. As shown, a service module
408 may include one or more of services 324. The service a special concern and where frequent, short-lived adjustment

to the behavior of the device is desired.
FIG. 4 illustrates an example of a service environment

322 in accordance with an embodiment of the present
invention.

20 environment 322 preferably provides a registry so that
services can locate one another. When a service is started it
is added to a registry, and when it is stopped it is removed
from the registry. When a service uses another service, a
dependency exists between the service module and the other As shown in FIG. 4, service environment 322 includes a

service environment kernel 402, a Virtual Machine (VM)
404 and device API extensions 406. Service environment
kernel 402 will be described in more detail below. Although
the implementation of VM 404 and device API extensions
406 depends on the capabilities and functionalities of device
202, it is intended that they commonly provide a platform- 30

independent interface so that code comprising service envi­
ronment kernel 402 and services 324 can execute on any
device 202. In one example of the invention, VM 404
includes a Java Virtual Machine (JVM) and the Java foun­
dation classes. The Java Virtual Machine is one type of
virtual machine that provides for platfonn independent
computing using the Java programming language. Those
skilled in the art will understand how to implement NM 404
depending on the network device CPU 302, operating sys­
tem 316 and device-level code 318, because JVMs are, by
their nature, intended to be portable to different executing
platforms.

It should be further noted that device API extensions 406
mayor may not be necessary depending on the existing APIs
of the device and the types of services 324 that are desired
to be executed on the device. For example, where the device
202 includes a standard MIB interface, and a downloaded
service 324 includes functionality for getting and reporting

25 service. The service environment 322 manages these depen­
dencies and ensures that they are satisfied. If dependencies
carmot be satisfied, the dependent service cannot be started.
If a running service depends on a service that is stopped, the
dependent service must also be stopped.

The following describes an example implementation of
services 324 in accordance with this example of the inven­
tion using the Java programming language.

In one example of the invention, services 324 are grouped
in one or more service modules 408 which are packaged in

35 Java Archive (JAR) files. The JAR file contains the classes
that implement the services 324 and any auxiliary resources
that they require, such as data files and images. The JAR file
can also contain subsidiary JAR files to help organize these
resources. The JAR manifest contains signature infonnation

40 that is used to authenticate the JAR and verifY its integrity
as part of the service environment's security mechanism.
Additional service environment-specific information is
placed in the JAR manifest to represent meta-data such as
the dependencies the JAR has, and declarations for the

45 services that it provides.
Once the services are packaged, the JAR file correspond­

ing to service module 408 can be downloaded across the
network from a server such as server 204 to the network
device 202 hosting the service environment.

A service module in accordance with the invention is
declared by providing a service module header in the
manifest. This header gives the fully qualified name of a
class in the JAR file that implements a standard interface.
The service environment 322 can use this class to discover

on MIB variables, a device API extension 406 may be
provided on the device for interoperating with the device 50

code 318 that implements the MIB interface and for pro­
viding a standard programming interface for programs writ­
ten in the language of service 324. Device API extensions
406 are shown here so that those skilled in the art will
understand how to practice the invention, though illustra­
tions and details of particular API extensions are not nec­
essary to understand the invention.

55 dependencies the service module has on other services,
manage the lifecycle of the service module, discover any
auxiliary resources and check version information.

Below is an example of the manifest headers for a simple
service module based on the standard interface:

Module: mypackage.MyModule
Services: mypackage.MyService(implemtationID)
Dependencies: otherpackage.OtherService

In operation, the service environment kernel 402 and VM
404 are preferably launched as part of the device's boot
image. One or more services 324 may be launched auto- 60

matically by service environment 322, or certain services
324 may be launched only upon request from a network
manager. Apart from the functionalities illustrated in FIG. 4,
service environment 322 may include some device-specific
code that enables the service environment to be executed as

This declares that the service module contains the stan­
dard interface class with the fully qualified name mypack-

65 age.MyModule which provides a service with the fully
qualified name mypackage.MyService. In addition, this ser­
vice module uses facilities from the otherpackage.OtherSer-

a task under the device's existing operating system and to
launch the VM and service environment kernel. In such an

US 7,127,526 Bl
7

vice service provided by another service module. This
means that this service module has a dependency on other­
package.OtherService.

Below is an example of a standard interface in accordance
with an embodiment of the present invention.

public interface Service

{
/** Performs any service-specific operations when the

8
* classes and services provided by services from other

servIces.

*
* @param context the service being nninstalled
* @exception ServiceException if an error occurs during

execution
*/
void nninstall(ServiceContext context) throws ServiceEx­

ception;
servIce IS 10 /** Gets an array of all the services that the service is

declared * installed. This method is called before the servIce IS
fully

* resolved. This means that it can make use of any classes
and

* to depend on. The service environment uses this infor­
mation to

* resolve dependencies before starting the service.
* resources that are in the service itself, but it must not use 15

any
*
* @param context the service

* of the services from other services that it depends upon.
Simply

* declaring a variable with a type provided by another

* @return the services that the service depends upon;
*<code>nulk/code> if the service doesn't depend on any
*/

servIce 20 ServiceDescription[1 getRequiredServices(ServiceCon­
text context); * constitutes a use of the service.

*
* @param context the service that is being installed
* @exception ServiceException if the service cannot be

/** Gets an array of all of the JAR files that the service has
* declared a dependency on. These JAR files are added to

the
installed 25 * service's class path. If a specified JAR file cannot be

found in */
void install(ServiceContext context) throws ServiceEx­

ception;
/** Performs any service-specific operations when the

servIce IS
* started. The service's dependencies are resolved before

this
* method is called, so it can use classes and services

provided

* the service's underlying JAR file, it is is silently
ignored.

This method returns <code>nulk/code> if there are no
30 JAR file

* dependencies. The service environment uses this infor­
mation to

* resolve dependencies before starting the service.

*
* by services from other services. 35 * @param context the service

*
* @param context the service that is being started
* @exception ServiceException if the service cannot be

started

* @return the names of the JAR files; or <code>nulk/
code> if

* there are no JAR file dependencies
*/

~ ~ String[1 getJarFiles(ServiceContext context);
/** Gets information about this service. void start(ServiceContext context) throws ServiceExcep­

tion;
/** Performs any service-specific operations when the

servIce IS

*
* @param context the service
ServiceInfo getServiceInfo(ServiceContext context);

* stopped. The service's dependencies are resolved before 45

this
/** Gets information about a service provided by this

servIce.
* method is called, so it can use classes and services

provided
* by services from other services. The service's depen­

dencies are
* set to the unresolved state after this method returns.

*
* @param context the service that is being started
* @exception ServiceException if the service cannot be

started
*/
void stop(ServiceContext context) throws ServiceExcep­

tion;
/** Performs any service-specific operations when the

servIce IS
* nninstalled. This method is called after the service is

stopped
* (if it had been started), and before any of the service's
* resources are removed. The service's dependencies are

not
* resolved when this method is called, so it cannot make

use of

*
* @param context the service
**/

50 ServiceInfo getServiceInfo(ServiceContext context, Ser-
viceDescription desc);

In one example of the invention, in addition to service­
specific code, services 324 include code that declares an
interface which extends or implements a standard defined

55 interface class for all services, and provides an object that
implements that interface. The service module preferably
further includes code which defines how the services are
started and stopped (e.g. start and stop methods, which may
be part of the standard interface as shown above). After the

60 service is started, it is added to a registry maintained by the
service environment, and before it stops it is unregistered.
Services can export their functionality to other service
modules rnnning on the network device, and they can also
make use of services provided by other service modules.

65 Services are identified with a service description. As
shown above, these descriptions (e.g. mypackage.MyServi­
ce(implementationID)) are comprised of two parts: the fully

US 7,127,526 Bl
9

qualified name of the interface that declares the service (e.g.
mypackage.MyService) and a service-specific name that lets
a client such as network manager 206 distinguish between
multiple implementations of the service (e.g. implementa­
tionlD). For example, a service module that provides log­
ging services might declare an interface myUtils.MyLogger,
and then provide one implementation that writes the log to
local persistent storage, and another implementation that
transmits the log messages across the network to a server. In
this case, the service module provides two different service 10

objects that implement that myUtils.MyLogger interface.
These objects would be registered using different service
descriptions. Both service descriptions would use the
myUtils.MyLogger interface name, but they would have
different service-specific names (e.g. myUtils.MyLogger 15

(local) and myUtils.MyLogger(remote)).
There is no requirement that the service module that

provides the service interface be the only one that can
provide an implementation of it. Two service modules may
both register an implementation of a service, each with 20

different service-specific names. For this to be possible, the
service module that does not contain the interface definition
declares a dependency on that service.

FIG. 5 further illustrates an example of a service envi­
ronment kernel 402 in accordance with an embodiment of 25

the present invention.

10
environment kernel 402. Service manager 512 first executes
a start sequence that initializes the set of services operating
on the device 202. Network interface 510 and certain of the
other modules in kernel 402 can be implemented as part of
the initial services included in the initial set. Further, the
start sequence may also be a service itself that is located in
service store 502 or on another device such as application
server 204.

The start sequence may specify a list of the URLs
corresponding to other initial service modules that should be
installed and started on the device at boot time (including
network interface 510 and other modules in kernel 402).
Such initial services can further include basic services that
can be called by other services such as logging services. The
URLs may specify JAR files corresponding to service mod­
ules that are located on the device 202, or they may be
located on application server 204. For those URLs referring
to JAR files on server 204, service manager 512 may
interoperate with network interface 510 and service installer
506 to retrieve, download and store the service modules
encapsulated in those JAR files.

As service modules are loaded and installed on the device
202, service manager 512 updates the service registry 514.
Thereafter, as additional service modules are downloaded,
executed or uninstalled, either by operation of service man­
ager 512, or in response to other network elements such as
network manager 206, service manager 512 manages the
operations of service installer 506, service launcher 508 and
service uninstaller 504 to perform such downloading, execu-

30 tion or uninstallation, in accordance with service relation­
ships defined in the service registry 514 that service manager
512 maintains.

As shown in FIG. 5, service environment kernel 402
includes a service store 502, a service uninstaller 504, a
service installer 506, a service launcher 508, a network
interface 510, a service manager 512 and a service registry
514. The division of functionalities among these blocks is
intended to be illustrative rather than limiting. It should be
apparent that these functionalities may be grouped and
divided in various alternative implementations while
remaining within the spirit of the invention. Moreover, there 35

exist other alternative embodiments that may include more
or less functionality than described in this example, and such
alternative embodiments are also within the scope of the
invention.

Generally, in operation, service manager 512 sends and 40

responds to messages from the network through network
interface 510 and coordinates the downloading, manage­
ment and execution of services via service installer 506,
service launcher 508 and service uninstaller 504, in the
process managing the contents of service registry 514. In 45

one example of the invention, services 324, service manager
512, network interface 510, service installer 506, service
launcher 508 and service uninstaller 504 are implemented
using the Java programming language. Accordingly, execu­
tion of the functionalities of these elements involves pro- 50

viding instructions to the Java VM 404 and interfacing with
API extensions 406, with both the Java VM 404 and
extensions 406 being written in the native progrannning
language. In this way, the service environment kernel 402 of
the present invention can be made portable to any network 55

device platform to which can be ported a Java VM, thus
dramatically enhancing network management capabilities,
particularly in networks comprising disparate types of net­
work devices.

In one example of the invention, service store 502 keeps
the class and other files corresponding to the service mod­
ules 408 accessible to the network device. Alternatively,
service store 502 could be implemented as the part of the
VM that stores the byte codes corresponding to the service
modules resident on the device. In the alternative example,
it should be further noted that the class and other files
associated with the service modules may be accessed by the
VM with a path to a directory structure on application server
204 using a URL and a HTTP server, for example.

Network interface 510 provides functionality for commu­
nicating with other network components such as network
manager 206 and application server 204 for the downloading
and execution of services 324. In one example of the
invention, the network interface 510 comprises an HTTP
server. Network interface 510 can also comprise a command
line interface such as a Telnet interface. Some initial set of
commands that can be implemented are: install (allowing a
remote device to download and install a service module on
the device 202, such as by specifYing a URL of a JAR file
corresponding to the service module); start (allowing a
remote device to launch a service module for execution on
device 202); stop (allowing a remote device to stop a service
module executing on device 202); uninstall (allowing a
remote device to uninstall a service module loaded on device
202); load (allowing a remote device to load and launch a
service module on device 202); unload (allowing a remote

In one example of the invention, service environment 322 60 device to stop and uninstall a service module executing on
device 202); modules (allowing a remote to device to view
a list of the currently installed service modules on device
202); services (allowing a remote device to view a list of the

is a single executable that is launched as a task under the
device operating system when the device 202 is booted,
including service environment kernel 402, Virtual Machine
404 and Device API extensions 406. The service manager
512 is the main procedure of the service environment kernel 65

402 and calls the other procedures in the service environ­
ment 322, as well as the other modules in the service

currently ruuning services on device 202).
Service installer 506 loads the service module JAR file

from the location specified (which can be local to the device
202 itself or accessed via a URL on a remote device, for

US 7,127,526 Bl
11

example), and checks to ensure that it has a valid manifest
and that it contains a service implementation. Service
installer 506 calls the service module's install method to
allow it to perform any special processing. The service
module's dependencies are not resolved at this time. Spe­
cifically, while the service module's dependencies on
another service module are unresolved, the service module
cannot use any services provided by that other service
module. Any attempt to do so will result in a java.lang.No­
ClassDefFoundError exception. Services provided by the 10

service module are not started yet; however, objects corre­
sponding to each of the class files in the service module are
instantiated.

12
When a service module uses a service provided by a

different service module, it creates a dependency on that
service. This means that another service module providing
that service must be installed and started before this service
module can be started. The service environment 322 tracks
which services are currently running, and checks that the
dependencies declared by the service module are satisfied
when it is started. The service environment also gives each
service module its own name space to protect it from
inadvertent name clashes. When a dependency is created,
the service environment connects the name space of the
service module providing the service to the dependent
service module. This breaks down the insulation between the

The result of installing a service module is a service
module context. A ServiceModuleContext is an object that
encapsulates the runtime representation of a service module.
Most module management methods require a ServiceMod­
uleContext as one of their arguments.

two service modules and enables the dependent service
15 module to use classes and methods in the service. When the

Once a service module has been installed it can be started
by service launcher 50S. Service launcher 50S calls the 20

service module's start method to allow the service module to

dependency is removed, access to the names provided in the
other service module is also removed.

FIG. 6 illustrates a method of loading and managing a
service for execution on a network device in accordance
with an embodiment of the present invention.

As shown in FIG. 6, network device 202 (preferably at
boot time) launches the service environment 322 (S602).
When launched, the service environment 322 executes a
start sequence that initializes the set of services operating on

25 the device 202. The start sequence may include a list of the
URLs of initial service modules that should be installed and

start the services that it provides. Before making this call, the
service manager resolves the service module's dependen­
cies. To do this, the service manager checks in service
registry 514 that all of the services that the service module
depends on (as provided in the service module's manifest)
are available. If any of these services are not available, the
service module generates a runtime error, which mayor may
not result in a report back to the requesting client. A service
module can also declare a dependency on JAR files that it 30

provides. When the service manager resolves the service
module's dependencies. the contents of these JAR files are
also available for use by the service module. A service
module's main task when it is started is to create, start, and
register its services via service manager 514. The service 35

enviroument places no constraints on the interface between
the service module and its services. To ensure that only the
service module can create and start and stop the services it

started on the device at boot time. The URLs may specifY
JAR files corresponding to service modules that are located
on the device 202, or they may be located on application
server 204. For those URLs referring to JAR files on server
204, service environment 322 downloads the service mod-
ules encapsulated in those JAR files onto network device
202 (S604). As service modules are installed and started on
the device 202, the service environment updates and main­
tains a service registry (S606).

When a new service is requested to be executed on the
network device (S60S), for example by network manager
206, service environment 324 determines whether the ser­
vice exists on the device or needs to be downloaded. If it
needs to be downloaded from a remote location such as
server 204 (determined in block S610), the service is down­
loaded to device 202 (S612). Service environment 324 then
determines whether all service relationships defined in the
service registry 514 are satisfied for the new service (S614).

is preferable that the service's constructors and the other
administration methods have package access, not public 40

access. Once a service has been created and started it can be
registered in the service registry. This makes it available for
use by other service modules. The service module start
method should call the service manager 512 to perform the
registration.

Some services will execute to perform a dedicated task
and then stop. Alternatively, a service module can also
stopped by service launcher, such as by calling the service's
stop method. If one of the executing service module's
services has been acquired by another service module, and 50

has not been released yet, the service manager generates a
runtime exception, and the service module is not stopped. To
force a service module to be stopped even if it is still in use,
service launcher kills any dependent service modules, then
stops this service module. The service module's main tasks 55

when it is stopped are to discard any references to objects
from other service modules, release any services that is has
acquired, and to unregister any services that it has provided.

45 If not, service environment checks whether the relationships
can be resolved, for example by starting services that the
new service is dependent upon (S616). If not, the service
environment issues an error report (S61S). Otherwise, or if

Service uninstaller 504 uninstalls a service module by
relinquishing any references it has to the service module's 60

objects and enabling the NM to garbage collect the service
module.

service relationships are already satisfied, the new service is
executed and the device registry is updated with information
corresponding to the new service (S620).

FIG. 7 illustrates an example of a network device 202 that
has been adapted for dynamically loading and managing
services in accordance with an embodiment of the present
invention.

As shown in FIG. 7, network device 700 includes a
separated control plane 702 and forwarding plane 704.
Generally, packet forwarding between ports of the device is
handled in the forwarding plane 704 by switching fabric 712
and switch modules 714 at wire speed, whereas control tasks
can be simultaneously handled in the control plane 702
without affecting packet forwarding performance. The con­
trol plane 702 may interact with the forwarding plane 704,
however, to adjust forwarding rules and retrieve statistics for

Service manager 512 maintains service registry 512 and
manages the loading and installation of service modules by
service installer 506, the execution of services via service
launcher 50S, and the removal of service modules by service
uninstaller 504.

65 example.
As further shown in FIG. 7, control plane 702 includes

CPU system 710, on top of which executes service envi-

US 7,127,526 Bl
13

ronment 322. Service environment 322 facilitates the
dynamic loading, management and execution of dynamic
services 324 as explained in more detail above. Dynamic
services 324 enhance the performance of device 700 above
and beyond that of conventional device 102.

In one example of the invention, CPU system 710,
switching fabric 712 and switch modules of device 700 can
be together implemented in a Nortel Accelar/Passport family

14
ing dynamic services that can leverage the capabilities of the
separated control and forwarding plane of the present
embodiment are possible.

Although the present invention has been particularly
described with reference to the preferred embodiments, it
should be readily apparent to those of ordinary skill in the art
that changes and modifications in the form and details may
be made without departing from the spirit and scope of the
invention. It is intended that the appended claims include

of router switches. Such an implementation is preferred due
to the separate control plane 702 and forwarding plane 704
of the Nortel Accelar/Passport family. However, it should be
apparent that equivalent devices can be used to implement
these elements of the present invention. Moreover, it should

10 such changes and modifications.

be understood that the invention is applicable to network 15

devices that do not have a separate control plane and
forwarding plane, and even to devices that do not have a
packet forwarding architecture at all, and thus is not limited
to the device illustrated in FIG. 7. In the Nortel Accelarl
Passport implementation, switching fabric 712 and switch 20

modules 714 are comprised of hardware integrated circuits
such as ASICs. This allows packets to be forwarded between
switch ports at wire speed.

Generally, packets arriving at the ports of the device 700
are processed by forwarding processor 718 of switch mod- 25

ules 714 in accordance with forwarding rules 716. Forward­
ing processor 718 also maintains statistics and monitors 720
for its associated ports. Normal network traffic is forwarded
between ports by switch modules 714 through switching 30

fabric 712. Packets addressed to the device 700 itself (such
as ARP and SNMP messages, for example) are forwarded by
the switch modules 714 to CPU system 710 via switching
fabric 712.

What is claimed is:
1. A method for performing a service on a network device,

comprising the steps of:
loading the service on the network device from another

location, the service having a corresponding set of
service relationships, wherein the loading includes
downloading a file corresponding to the service and
containing program code operable to perform the ser-
vice;

checking the service relationships of the loaded service
against a stored service registry, wherein the service
registry includes indications of services and indications
of dependencies of services on other services, and
wherein the checking the service relationships of the
loaded service includes determining whether all other
services the loaded service depends on are available;
and

causing the service to be executed on the network device
only if all other services the loaded service depends on
are determined to be available.

2. A method according to claim 1, further comprising the
step of:

updating the stored service registry with information
corresponding to the executed service.

3. A method according to claim 1, wherein the step of
causing the service to be executed includes the step of
providing instructions corresponding to the service to a
virtual machine that is ported to the network device.

As set forth in more detail above, in accordance with the 35

present invention, service environment 322 provides an
execution platform through which services 324 are per­
formed using CPU system 710. Service environment 322
also facilitates the downloading from application server 204
and installation onto device 202 of new services 324' and
manages their execution on CPU system 710. As set forth
above, network manager 206 can communicate with device
700 to request device 202 to execute one or more of the
services 324.

40 4. A method according to claim 1, further comprising the
step of:

causing another service to be executed on the network
device in accordance with a result of the step of
checking the service relationships.

An advantage of the embodiment of the invention illus­
trated in FIG. 7 is the ability of services to be downloaded
and managed without affect wire-speed packet forwarding
performance. With the separation of the control and for­
warding operations, and the provision of the services envi­
ronment in the control plane, the CPU processing consumed

45 5. A method according to claim 1, wherein the network
device is one of a router, a switch, and a hub.

6. A method according to claim 5, wherein the service
comprises accessing a MIB on the network device.

7. A method according to claim 1, wherein the network
50 device comprises a packet switching fabric.

8. A method according to claim 7, wherein the network
device comprises a control plane and a forwarding plane
including the packet switching fabric, the loading, checking
and causing steps being performed in the control plane

55 without interruption of the forwarding plane.

by service environment 322 that is required to download and
manage services can be performed without any impact on
the normal packet forwarding operations of the device 700.
Moreover, services can be downloaded that can alter the
wire-speed packet forwarding operations. For example, a
network manager may desire that certain types of packet
flows should receive a preferred quality or class of service
for a certain period of time (i.e. QOS). The network manager
can then download a service 324 to the device 700 which is
managed and executed by service environment 322. The 60

downloaded service 324 can interface with APIs that interact
with native device control software that causes the forward­
ing rules 716 in switch modules 714 to be updated in
accordance with the desired QOS for the certain packet
flows. The packets belonging to the identified certain flows 65

can then be forwarded at wire-speed in accordance with the
desired QOS. Many other types of dynamic services, includ-

9. A method according to claim 8, further comprising the
step of interfacing with embedded hardware and software to
cause forwarding rules referred to by the packet switching
fabric to be adjusted.

10. A method according to claim 7, wherein the service
comprises accessing a MIB on the network device.

11. A method according to claim 1, further comprising the
step of:

communicating with a remote client to receive an iden­
tifier corresponding to the service to be performed.

12. A method according to claim 11, wherein the another
location corresponds to an application server that stores a

US 7,127,526 Bl
15

plurality of services, and wherein the identifier comprises a
URL pointing to the application server.

13. A method according to claim 12, wherein the step of
loading includes the step of downloading the file corre­
sponding to the service from the application server in
accordance with the URL.

14. A method according to claim 13, wherein the step of
downloading includes the step of communicating with the
application server using the HTTP protocol.

15. A method according to claim 1, wherein the another 10

location corresponds to an application server that stores a
plurality of services.

16. A method according to claim 11, wherein the step of
communicating includes the step of providing a telnet inter­
face that allows the remote client to provide the identifier in 15

association with a predefined command requesting the ser­
vice to be performed.

16
27. A network device according to claim 24, wherein the

service comprises accessing a MIB on the network device.
28. A network device according to claim 18, further

comprising:
means for communicating with a remote client to receive

an identifier corresponding to the service to be per­
formed.

29. A network device according to claim 28, wherein the
another location corresponds to an application server that
stores a plurality of services, and wherein the identifier
comprises a URL pointing to the application server.

30. A network device according to claim 29, wherein the
means for loading includes means for downloading the file
corresponding to the service from the application server in
accordance with the URL.

31. A network device according to claim 30, wherein the
mean for downloading includes means for communicating
with the application server using the HTTP protocol.

32. A network device according to claim 28, wherein the

17. A method according to claim 1, further comprising the
step of interfacing with embedded hardware and software to
perform tasks associated with the service.

18. A network device, comprising
means for loading a service on the network device from

another location, the service having a corresponding set

20 means for communicating includes means for providing a
telnet interface that allows the remote client to provide the
identifier in association with a predefined command request­
ing the service to be performed.

of service relationships, wherein the loading includes
downloading a file corresponding to the service and 25

containing program code operable to perform the ser-
vice;

33. A network device according to claim 18, wherein the
another location corresponds to an application server that
stores a plurality of services.

means for checking the service relationships of the loaded
service against a stored service registry, wherein the
service registry includes indications of services and
indications of dependencies of services on other ser­
vices, and wherein the checking the service relation­
ships of the loaded service includes determining
whether all other services the loaded service depends
on are available; and

34. A network device according to claim 18, further
comprising means for interfacing with native hardware and
software to perform tasks associated with the service.

30 35. A network device for locally performing a service,

means for causing the service to be executed on the
network device only if all other services the loaded
service depends on are determined to be available.

19. A network device according to claim 18, further
comprising:

means for updating the stored service registry with infor­
mation corresponding to the executed service.

35

40

20. A network device according to claim 18, wherein the
means for causing the service to be executed includes means
for providing instructions corresponding to the service to a 45

virtual machine that is ported to the network device.
21. A network device according to claim 18, further

comprising:
means for causing another service to be executed on the

network device in accordance with a result from the 50

means for checking the service relationships.
22. A network device according to claim 18, wherein the

network device is one of a router, a switch, and a hub.
23. A network device according to claim 22, wherein the

service comprises accessing a MIB on the network device. 55

24. A network device according to claim 18, wherein the
network device comprises a packet switching fabric.

25. A network device according to claim 24, wherein the
network device comprises a control plane and a forwarding
plane including the packet switching fabric, the means for 60

loading, means for checking and means for causing being
operable in the control plane without interruption of the
forwarding plane.

26. A network device according to claim 25, further
comprising means for interfacing with native hardware and 65

software to cause forwarding rules referred to by the packet
switching fabric to be adjusted.

comprising:
a network interface adapted to load the service on the

network device from another location, by downloading
a file corresponding to the service and containing
program code operable to perform the service, the
service having a corresponding set of service relation­
ships;

a service registry, wherein the service registry includes
indications of services and indications of dependencies
of services on other services;

a service manager coupled to the network interface and
the service registry that is adapted to check the service
relationships of the loaded service against the service
registry, wherein the checking the service relationships
of the loaded service includes determining whether all
other services the loaded service depends on are avail-
able; and

a service launcher coupled to the service manager that is
adapted to cause the service to be executed on the
network device only if all other services the loaded
service depends on are determined to be available.

36. A network device according to claim 35, wherein the
network device is one of a router, a switch, and a hub.

37. A network device according to claim 35, further
comprising a packet switching fabric.

38. A network device according to claim 37, further
comprising:

a control plane including the network interface, the ser­
vice registry, the service manager and the service
launcher; and

a forwarding plane including the packet switching fabric,
the network interface, the service manager and the
service launcher being operable in the control plane
without interruption of the forwarding plane.

39. A network device according to claim 38, further
comprising API extensions through which the service inter-

US 7,127,526 Bl
17

faces with native hardware and software to cause forwarding
rules referred to by the packet switching fabric to be
adjusted.

18
a service launcher coupled to the service manager that is

adapted to cause the service to be executed on the
network device only if all other services the loaded
service depends on are determined to be available, and 40. A network device according to claim 35, wherein the

network interface is further adapted to communicate with a
remote client to receive an identifier corresponding to the
service to be performed.

41. A network device according to claim 40, wherein the
network interface includes a telnet interface that allows the
remote client to provide the identifier in association with a
predefined command requesting the service to be performed.

42. A network device according to claim 35, further
comprising API extensions through which the service inter­
faces with native hardware and software to perform tasks
associated with the service.

a forwarding plane including a packet switching fabric,
the service environment being operable in the control
plane without interruption of the forwarding plane.

44. A method for updating one of a plurality of function-
10 alities of a network device, comprising the steps of:

providing a service environment that executes in a runt­
ime environment of the network device;

15

43. A network device for locally performing a service,
comprising:

a control plane including:
an embedded CPU and operating system,
a service environment ported to the embedded CPU and 20

operating system, the service environment having:
a network interface adapted to load the service on the

network device from another location, by downloading
a file corresponding to the service and containing
program code operable to perform the service, the 25

service having a corresponding set of service relation­
ships,

a service registry, wherein the service registry includes
indications of services and indications of dependencies
of services on other services, 30

a service manager coupled to the network interface and
the service registry that is adapted to check the service
relationships of the loaded service against the service
registry, wherein the checking the checking the service
relationships of the loaded service includes determin- 35

ing whether all other services the loaded service
depends on are available, and

providing code corresponding to the updated one of the
functionalities to the service environment from another
location on a network coupled to the network device by
downloading a file corresponding to the service and
containing program code operable to perform the ser-
vice;

providing header information indicating relationships
required by the updated one of the functionalities to the
service environment;

checking the relationships required by the updated one of
the functionalities against a stored service registry,
wherein the service registry includes indications of
services and indications of dependencies of services on
other services, wherein the checking the relationships
required by the updated one of the functionalities
includes determining whether all services required by
the updated one of the functionalities are available; and

executing the code corresponding to the updated one of
the functionalities only if all other services required by
the updated one of the functionalities are determined to
be available.

* * * * *

